গণিতের সকল সূত্র একসাথে
আসুন গণিতের সকল সূত্র একসাথে বুঝে মুখস্ত করি। না বুঝে মুখস্ত করবেন না ভুলে যাবেন। আগে নিয়ম গুলো বুঝুন । প্রাকটিস করুন প্রতিদিন।
আরও শিখুন কিভাবে রসায়নের মৌলের রূপান্তর mg/l থেকে meq/l এ রূপান্তর করবেন?
গণিতের সকল সূত্র: বীজগাণিতিক সূত্রাবলী
1. (a+b)²= a²+2ab+b²
2. (a+b)²= (a-b)²+4ab
3. (a-b)²= a²-2ab+b²
4. (a-b)²= (a+b)²-4ab
5. a² + b²= (a+b)²-2ab.
6. a² + b²= (a-b)²+2ab.
7. a²-b²= (a +b)(a -b)
8. 2(a²+b²)= (a+b)²+(a-b)²
9. 4ab = (a+b)²-(a-b)²
10. ab = {(a+b)/2}²-{(a-b)/2}²
11. (a+b+c)² = a²+b²+c²+2(ab+bc+ca)
12. (a+b)³ = a³+3a²b+3ab²+b³
13. (a+b)³ = a³+b³+3ab(a+b)
14. a-b)³= a³-3a²b+3ab²-b³
15. (a-b)³= a³-b³-3ab(a-b)
16. a³+b³= (a+b) (a²-ab+b²)
17. a³+b³= (a+b)³-3ab(a+b)
18. a³-b³ = (a-b) (a²+ab+b²)
19. a³-b³ = (a-b)³+3ab(a-b)
20. (a² + b² + c²) = (a + b + c)² – 2(ab + bc + ca)
21. 2 (ab + bc + ca) = (a + b + c)² – (a² + b² + c²)
22. (a + b + c)³ = a³ + b³ + c³ + 3 (a + b) (b + c) (c + a)
23. a³ + b³ + c³ – 3abc =(a+b+c)(a² + b²+ c²–ab–bc– ca)
24. a3 + b3 + c3 – 3abc =½ (a+b+c) { (a–b)²+(b–c)²+(c–a)²}
25.(x + a) (x + b) = x² + (a + b) x + ab
26. (x + a) (x – b) = x² + (a – b) x – ab
27. (x – a) (x + b) = x² + (b – a) x – ab
28. (x – a) (x – b) = x² – (a + b) x + ab
29. (x+p) (x+q) (x+r) = x³ + (p+q+r) x² + (pq+qr+rp) x +pqr
30. bc (b-c) + ca (c- a) + ab (a – b) = – (b – c) (c- a) (a – b)
31. a² (b- c) + b² (c- a) + c² (a – b) = -(b-c) (c-a) (a – b)
32. a (b² – c²) + b (c² – a²) + c (a² – b²) = (b – c) (c- a) (a – b)
33. a³ (b – c) + b³ (c-a) +c³ (a -b) =- (b-c) (c-a) (a – b)(a + b + c)
34. b²-c² (b²-c²) + c²a²(c²-a²)+a²b²(a²-b²)=-(b-c) (c-a) (a-b) (b+c) (c+a) (a+b)
35. (ab + bc+ca) (a+b+c) – abc = (a + b)(b + c) (c+a)
36. (b + c)(c + a)(a + b) + abc = (a + b +c) (ab + bc + ca)
_____________________________________________
2. (a+b)²= (a-b)²+4ab
3. (a-b)²= a²-2ab+b²
4. (a-b)²= (a+b)²-4ab
5. a² + b²= (a+b)²-2ab.
6. a² + b²= (a-b)²+2ab.
7. a²-b²= (a +b)(a -b)
8. 2(a²+b²)= (a+b)²+(a-b)²
9. 4ab = (a+b)²-(a-b)²
10. ab = {(a+b)/2}²-{(a-b)/2}²
11. (a+b+c)² = a²+b²+c²+2(ab+bc+ca)
12. (a+b)³ = a³+3a²b+3ab²+b³
13. (a+b)³ = a³+b³+3ab(a+b)
14. a-b)³= a³-3a²b+3ab²-b³
15. (a-b)³= a³-b³-3ab(a-b)
16. a³+b³= (a+b) (a²-ab+b²)
17. a³+b³= (a+b)³-3ab(a+b)
18. a³-b³ = (a-b) (a²+ab+b²)
19. a³-b³ = (a-b)³+3ab(a-b)
20. (a² + b² + c²) = (a + b + c)² – 2(ab + bc + ca)
21. 2 (ab + bc + ca) = (a + b + c)² – (a² + b² + c²)
22. (a + b + c)³ = a³ + b³ + c³ + 3 (a + b) (b + c) (c + a)
23. a³ + b³ + c³ – 3abc =(a+b+c)(a² + b²+ c²–ab–bc– ca)
24. a3 + b3 + c3 – 3abc =½ (a+b+c) { (a–b)²+(b–c)²+(c–a)²}
25.(x + a) (x + b) = x² + (a + b) x + ab
26. (x + a) (x – b) = x² + (a – b) x – ab
27. (x – a) (x + b) = x² + (b – a) x – ab
28. (x – a) (x – b) = x² – (a + b) x + ab
29. (x+p) (x+q) (x+r) = x³ + (p+q+r) x² + (pq+qr+rp) x +pqr
30. bc (b-c) + ca (c- a) + ab (a – b) = – (b – c) (c- a) (a – b)
31. a² (b- c) + b² (c- a) + c² (a – b) = -(b-c) (c-a) (a – b)
32. a (b² – c²) + b (c² – a²) + c (a² – b²) = (b – c) (c- a) (a – b)
33. a³ (b – c) + b³ (c-a) +c³ (a -b) =- (b-c) (c-a) (a – b)(a + b + c)
34. b²-c² (b²-c²) + c²a²(c²-a²)+a²b²(a²-b²)=-(b-c) (c-a) (a-b) (b+c) (c+a) (a+b)
35. (ab + bc+ca) (a+b+c) – abc = (a + b)(b + c) (c+a)
36. (b + c)(c + a)(a + b) + abc = (a + b +c) (ab + bc + ca)
_____________________________________________
গণিতের সকল সূত্র: আয়তক্ষেত্র
1.আয়তক্ষেত্রের ক্ষেত্রফল = (দৈর্ঘ্য × প্রস্থ) বর্গ একক
2.আয়তক্ষেত্রের পরিসীমা = 2 (দৈর্ঘ্য+প্রস্থ)একক
3.আয়তক্ষেত্রের কর্ণ = √(দৈর্ঘ্য²+প্রস্থ²)একক
4.আয়তক্ষেত্রের দৈর্ঘ্য= ক্ষেত্রফল÷প্রস্ত একক
5.আয়তক্ষেত্রের প্রস্ত= ক্ষেত্রফল÷দৈর্ঘ্য একক
_____________________________________________
2.আয়তক্ষেত্রের পরিসীমা = 2 (দৈর্ঘ্য+প্রস্থ)একক
3.আয়তক্ষেত্রের কর্ণ = √(দৈর্ঘ্য²+প্রস্থ²)একক
4.আয়তক্ষেত্রের দৈর্ঘ্য= ক্ষেত্রফল÷প্রস্ত একক
5.আয়তক্ষেত্রের প্রস্ত= ক্ষেত্রফল÷দৈর্ঘ্য একক
_____________________________________________
গণিতের সকল সূত্র: বর্গক্ষেত্র
1.বর্গক্ষেত্রের ক্ষেত্রফল = (যে কোন একটি বাহুর দৈর্ঘ্য)² বর্গ একক
2.বর্গক্ষেত্রের পরিসীমা = 4 × এক বাহুর দৈর্ঘ্য একক
3.বর্গক্ষেত্রের কর্ণ=√2 × এক বাহুর দৈর্ঘ্য একক
4.বর্গক্ষেত্রের বাহু=√ক্ষেত্রফল বা পরিসীমা÷4 এক
_____________________________________________
2.বর্গক্ষেত্রের পরিসীমা = 4 × এক বাহুর দৈর্ঘ্য একক
3.বর্গক্ষেত্রের কর্ণ=√2 × এক বাহুর দৈর্ঘ্য একক
4.বর্গক্ষেত্রের বাহু=√ক্ষেত্রফল বা পরিসীমা÷4 এক
_____________________________________________
গণিতের সকল সূত্র: ত্রিভূজ
1.সমবাহু ত্রিভূজের ক্ষেত্রফল = √¾×(বাহু)²
2.সমবাহু ত্রিভূজের উচ্চতা = √3/2×(বাহু)
3.বিষমবাহু ত্রিভুজের ক্ষেত্রফল = √s(s-a) (s-b) (s-c)
এখানে a, b, c ত্রিভুজের তিনটি বাহুর দৈর্ঘ্য, s=অর্ধপরিসীমা
★পরিসীমা 2s=(a+b+c)
4সাধারণ ত্রিভূজের ক্ষেত্রফল = ½
(ভূমি×উচ্চতা) বর্গ একক
5.সমকোণী ত্রিভূজের ক্ষেত্রফল = ½(a×b)
এখানে ত্রিভুজের সমকোণ সংলগ্ন বাহুদ্বয় a এবং b.
6.সমদ্বিবাহু ত্রিভূজের ক্ষেত্রফল = 2√4b²-a²/4 এখানে, a= ভূমি; b= অপর বাহু।
7.ত্রিভুজের উচ্চতা = 2(ক্ষেত্রফল/ভূমি)
8.সমকোণী ত্রিভুজের অতিভুজ =√ লম্ব²+ভূমি²
9.লম্ব =√অতিভূজ²-ভূমি²
10.ভূমি = √অতিভূজ²-লম্ব²
11.সমদ্বিবাহু ত্রিভুজের উচ্চতা = √b² – a²/4
এখানে a= ভূমি; b= সমান দুই বাহুর দৈর্ঘ্য।
12.★ত্রিভুজের পরিসীমা=তিন বাহুর সমষ্টি
_____________________________________________
2.সমবাহু ত্রিভূজের উচ্চতা = √3/2×(বাহু)
3.বিষমবাহু ত্রিভুজের ক্ষেত্রফল = √s(s-a) (s-b) (s-c)
এখানে a, b, c ত্রিভুজের তিনটি বাহুর দৈর্ঘ্য, s=অর্ধপরিসীমা
★পরিসীমা 2s=(a+b+c)
4সাধারণ ত্রিভূজের ক্ষেত্রফল = ½
(ভূমি×উচ্চতা) বর্গ একক
5.সমকোণী ত্রিভূজের ক্ষেত্রফল = ½(a×b)
এখানে ত্রিভুজের সমকোণ সংলগ্ন বাহুদ্বয় a এবং b.
6.সমদ্বিবাহু ত্রিভূজের ক্ষেত্রফল = 2√4b²-a²/4 এখানে, a= ভূমি; b= অপর বাহু।
7.ত্রিভুজের উচ্চতা = 2(ক্ষেত্রফল/ভূমি)
8.সমকোণী ত্রিভুজের অতিভুজ =√ লম্ব²+ভূমি²
9.লম্ব =√অতিভূজ²-ভূমি²
10.ভূমি = √অতিভূজ²-লম্ব²
11.সমদ্বিবাহু ত্রিভুজের উচ্চতা = √b² – a²/4
এখানে a= ভূমি; b= সমান দুই বাহুর দৈর্ঘ্য।
12.★ত্রিভুজের পরিসীমা=তিন বাহুর সমষ্টি
_____________________________________________
গণিতের সকল সূত্র: রম্বস
1.রম্বসের ক্ষেত্রফল = ½× (কর্ণদুইটির গুণফল)
2.রম্বসের পরিসীমা = 4× এক বাহুর দৈর্ঘ্য
____________________________________________
2.রম্বসের পরিসীমা = 4× এক বাহুর দৈর্ঘ্য
____________________________________________
গণিতের সকল সূত্র: সামান্তরিক
1.সামান্তরিকের ক্ষেত্রফল = ভূমি × উচ্চতা =
2.সামান্তরিকের পরিসীমা = 2×(সন্নিহিত বাহুদ্বয়ের সমষ্টি)
_____________________________________________
2.সামান্তরিকের পরিসীমা = 2×(সন্নিহিত বাহুদ্বয়ের সমষ্টি)
_____________________________________________
গণিতের সকল সূত্র: ট্রাপিজিয়াম
1. ট্রাপিজিয়ামের ক্ষেত্রফল =½×(সমান্তরাল বাহু দুইটির যােগফল)×উচ্চতা
_____________________________________________
_____________________________________________
গণিতের সকল সূত্র: ঘনক
1.ঘনকের ঘনফল = (যেকোন বাহু)³ ঘন একক
2.ঘনকের সমগ্রতলের ক্ষেত্রফল = 6× বাহু² বর্গ একক
3.ঘনকের কর্ণ = √3×বাহু একক
_____________________________________________
2.ঘনকের সমগ্রতলের ক্ষেত্রফল = 6× বাহু² বর্গ একক
3.ঘনকের কর্ণ = √3×বাহু একক
_____________________________________________
গণিতের সকল সূত্র:আয়তঘনক
1.আয়তঘনকের ঘনফল = (দৈৰ্ঘা×প্রস্ত×উচ্চতা) ঘন একক
2.আয়তঘনকের সমগ্রতলের ক্ষেত্রফল = 2(ab + bc + ca) বর্গ একক
[ যেখানে a = দৈর্ঘ্য b = প্রস্ত c = উচ্চতা ]
3.আয়তঘনকের কর্ণ = √a²+b²+c² একক
4. চারি দেওয়ালের ক্ষেত্রফল = 2(দৈর্ঘ্য + প্রস্থ)×উচ্চতা
_____________________________________________
2.আয়তঘনকের সমগ্রতলের ক্ষেত্রফল = 2(ab + bc + ca) বর্গ একক
[ যেখানে a = দৈর্ঘ্য b = প্রস্ত c = উচ্চতা ]
3.আয়তঘনকের কর্ণ = √a²+b²+c² একক
4. চারি দেওয়ালের ক্ষেত্রফল = 2(দৈর্ঘ্য + প্রস্থ)×উচ্চতা
_____________________________________________
বৃত্ত
1.বৃত্তের ক্ষেত্রফল = πr²=22/7r² {এখানে π=ধ্রুবক 22/7, বৃত্তের ব্যাসার্ধ= r}
2. বৃত্তের পরিধি = 2πr
3. গোলকের পৃষ্ঠতলের ক্ষেত্রফল = 4πr² বর্গ একক
4. গোলকের আয়তন = 4πr³÷3 ঘন একক
5. h উচ্চতায় তলচ্চেদে উৎপন্ন বৃত্তের ব্যাসার্ধ = √r²-h² একক
6.বৃত্তচাপের দৈর্ঘ্য s=πrθ/180° ,
এখানে θ =কোণ
_____________________________________________
2. বৃত্তের পরিধি = 2πr
3. গোলকের পৃষ্ঠতলের ক্ষেত্রফল = 4πr² বর্গ একক
4. গোলকের আয়তন = 4πr³÷3 ঘন একক
5. h উচ্চতায় তলচ্চেদে উৎপন্ন বৃত্তের ব্যাসার্ধ = √r²-h² একক
6.বৃত্তচাপের দৈর্ঘ্য s=πrθ/180° ,
এখানে θ =কোণ
_____________________________________________
সমবৃত্তভূমিক সিলিন্ডার / বেলন
সমবৃত্তভূমিক সিলিন্ডারের ভূমির ব্যাসার্ধ r এবং উচ্চতা h আর হেলানো তলের উচ্চতা l হলে,
1.সিলিন্ডারের আয়তন = πr²h
2.সিলিন্ডারের বক্রতলের ক্ষেত্রফল (সিএসএ) = 2πrh।
3.সিলিন্ডারের পৃষ্ঠতলের ক্ষেত্রফল (টিএসএ) = 2πr (h + r)
_____________________________________________
1.সিলিন্ডারের আয়তন = πr²h
2.সিলিন্ডারের বক্রতলের ক্ষেত্রফল (সিএসএ) = 2πrh।
3.সিলিন্ডারের পৃষ্ঠতলের ক্ষেত্রফল (টিএসএ) = 2πr (h + r)
_____________________________________________
সমবৃত্তভূমিক কোণক
সমবৃত্তভূমিক ভূমির ব্যাসার্ধ r এবং উচ্চতা h আর হেলানো তলের উচ্চতা l হলে,
1.কোণকের বক্রতলের ক্ষেত্রফল= πrl বর্গ একক
2.কোণকের সমতলের ক্ষেত্রফল= πr(r+l) বর্গ একক
3.কোণকের আয়তন= ⅓πr²h ঘন একক
✮বহুভুজের কর্ণের সংখ্যা= n(n-3)/2
✮বহুভুজের কোণগুলির সমষ্টি=(2n-4)সমকোণ
এখানে n=বাহুর সংখ্যা
★সুষম বহুভুজ এর ক্ষেত্রে
অন্তঃকোণ + বহিঃকোণ=180°
বাহু সংখ্যা=360°/বহিঃ কোণ
★চতুর্ভুজের পরিসীমা=চার বাহুর সমষ্টি
_____________________________________________
1.কোণকের বক্রতলের ক্ষেত্রফল= πrl বর্গ একক
2.কোণকের সমতলের ক্ষেত্রফল= πr(r+l) বর্গ একক
3.কোণকের আয়তন= ⅓πr²h ঘন একক
✮বহুভুজের কর্ণের সংখ্যা= n(n-3)/2
✮বহুভুজের কোণগুলির সমষ্টি=(2n-4)সমকোণ
এখানে n=বাহুর সংখ্যা
★সুষম বহুভুজ এর ক্ষেত্রে
অন্তঃকোণ + বহিঃকোণ=180°
বাহু সংখ্যা=360°/বহিঃ কোণ
★চতুর্ভুজের পরিসীমা=চার বাহুর সমষ্টি
_____________________________________________
ত্রিকোণমিতির সূত্রাবলীঃ
1. sinθ=लম্ব/অতিভূজ
2. cosθ=ভূমি/অতিভূজ
3. taneθ=लম্ব/ভূমি
4. cotθ=ভূমি/লম্ব
5. secθ=অতিভূজ/ভূমি
6. cosecθ=অতিভূজ/লম্ব
7. sinθ=1/cosecθ, cosecθ=1/sinθ
8. cosθ=1/secθ, secθ=1/cosθ
9. tanθ=1/cotθ, cotθ=1/tanθ
10. sin²θ + cos²θ= 1
11. sin²θ = 1 – cos²θ
12. cos²θ = 1- sin²θ
13. sec²θ – tan²θ = 1
14. sec²θ = 1+ tan²θ
15. tan²θ = sec²θ – 1
16, cosec²θ – cot²θ = 1
17. cosec²θ = cot²θ + 1
18. cot²θ = cosec²θ – 1
_____________________________________________
2. cosθ=ভূমি/অতিভূজ
3. taneθ=लম্ব/ভূমি
4. cotθ=ভূমি/লম্ব
5. secθ=অতিভূজ/ভূমি
6. cosecθ=অতিভূজ/লম্ব
7. sinθ=1/cosecθ, cosecθ=1/sinθ
8. cosθ=1/secθ, secθ=1/cosθ
9. tanθ=1/cotθ, cotθ=1/tanθ
10. sin²θ + cos²θ= 1
11. sin²θ = 1 – cos²θ
12. cos²θ = 1- sin²θ
13. sec²θ – tan²θ = 1
14. sec²θ = 1+ tan²θ
15. tan²θ = sec²θ – 1
16, cosec²θ – cot²θ = 1
17. cosec²θ = cot²θ + 1
18. cot²θ = cosec²θ – 1
_____________________________________________
বিয়ােগের সূত্রাবলি
1. বিয়ােজন-বিয়োজ্য =বিয়োগফল।
2.বিয়ােজন=বিয়ােগফ + বিয়ােজ্য
3.বিয়ােজ্য=বিয়ােজন-বিয়ােগফল
_____________________________________________
2.বিয়ােজন=বিয়ােগফ + বিয়ােজ্য
3.বিয়ােজ্য=বিয়ােজন-বিয়ােগফল
_____________________________________________
গুণের সূত্রাবলি
1.গুণফল =গুণ্য × গুণক
2.গুণক = গুণফল ÷ গুণ্য
3.গুণ্য= গুণফল ÷ গুণক
_____________________________________________
2.গুণক = গুণফল ÷ গুণ্য
3.গুণ্য= গুণফল ÷ গুণক
_____________________________________________
ভাগের সূত্রাবলি
নিঃশেষে বিভাজ্য না হলে।
1.ভাজ্য= ভাজক × ভাগফল + ভাগশেষ।
2.ভাজক= (ভাজ্য— ভাগশেষ) ÷ ভাগফল।
3.ভাগফল = (ভাজ্য — ভাগশেষ)÷ ভাজক।
*নিঃশেষে বিভাজ্য হলে।
4.ভাজক= ভাজ্য÷ ভাগফল।
5.ভাগফল = ভাজ্য ÷ ভাজক।
6.ভাজ্য = ভাজক × ভাগফল।
_____________________________________________
1.ভাজ্য= ভাজক × ভাগফল + ভাগশেষ।
2.ভাজক= (ভাজ্য— ভাগশেষ) ÷ ভাগফল।
3.ভাগফল = (ভাজ্য — ভাগশেষ)÷ ভাজক।
*নিঃশেষে বিভাজ্য হলে।
4.ভাজক= ভাজ্য÷ ভাগফল।
5.ভাগফল = ভাজ্য ÷ ভাজক।
6.ভাজ্য = ভাজক × ভাগফল।
_____________________________________________
ভগ্নাংশের ল.সা.গু ও গ.সা.গু সূত্রাবলী
1.ভগ্নাংশের গ.সা.গু = লবগুলাের গ.সা.গু / হরগুলাের ল.সা.গু
2.ভগ্নাংশের ল.সা.গু =লবগুলাের ল.সা.গু /হরগুলার গ.সা.গু
3.ভগ্নাংশদ্বয়ের গুণফল = ভগ্নাংশদ্বয়ের ল.সা.গু × ভগ্নাংশদ্বয়ের গ.সা.গু.
_____________________________________________
2.ভগ্নাংশের ল.সা.গু =লবগুলাের ল.সা.গু /হরগুলার গ.সা.গু
3.ভগ্নাংশদ্বয়ের গুণফল = ভগ্নাংশদ্বয়ের ল.সা.গু × ভগ্নাংশদ্বয়ের গ.সা.গু.
_____________________________________________
গড় নির্ণয়
1.গড় = রাশি সমষ্টি /রাশি সংখ্যা
2.রাশির সমষ্টি = গড় ×রাশির সংখ্যা
3.রাশির সংখ্যা = রাশির সমষ্টি ÷ গড়
4.আয়ের গড় = মােট আয়ের পরিমাণ / মােট লােকের সংখ্যা
5.সংখ্যার গড় = সংখ্যাগুলাের যােগফল /সংখ্যার পরিমান বা সংখ্যা
6.ক্রমিক ধারার গড় =শেষ পদ +১ম পদ /2
_____________________________________________
2.রাশির সমষ্টি = গড় ×রাশির সংখ্যা
3.রাশির সংখ্যা = রাশির সমষ্টি ÷ গড়
4.আয়ের গড় = মােট আয়ের পরিমাণ / মােট লােকের সংখ্যা
5.সংখ্যার গড় = সংখ্যাগুলাের যােগফল /সংখ্যার পরিমান বা সংখ্যা
6.ক্রমিক ধারার গড় =শেষ পদ +১ম পদ /2
_____________________________________________
সুদকষার পরিমান নির্নয়ের সূত্রাবলী
1. সুদ = (সুদের হার×আসল×সময়) ÷১০০
2. সময় = (100× সুদ)÷ (আসল×সুদের হার)
3. সুদের হার = (100×সুদ)÷(আসল×সময়)
4. আসল = (100×সুদ)÷(সময়×সুদের হার)
5. আসল = {100×(সুদ-মূল)}÷(100+সুদের হার×সময় )
6. সুদাসল = আসল + সুদ
7. সুদাসল = আসল ×(1+ সুদের হার)× সময় |[চক্রবৃদ্ধি সুদের ক্ষেত্রে]।
_____________________________________________
2. সময় = (100× সুদ)÷ (আসল×সুদের হার)
3. সুদের হার = (100×সুদ)÷(আসল×সময়)
4. আসল = (100×সুদ)÷(সময়×সুদের হার)
5. আসল = {100×(সুদ-মূল)}÷(100+সুদের হার×সময় )
6. সুদাসল = আসল + সুদ
7. সুদাসল = আসল ×(1+ সুদের হার)× সময় |[চক্রবৃদ্ধি সুদের ক্ষেত্রে]।
_____________________________________________
লাভ-ক্ষতির এবং ক্রয়-বিক্রয়ের সূত্রাবলী
1. লাভ = বিক্রয়মূল্য-ক্রয়মূল্য
2.ক্ষতি = ক্রয়মূল্য-বিক্রয়মূল্য
3.ক্রয়মূল্য = বিক্রয়মূল্য-লাভ
অথবা
ক্রয়মূল্য = বিক্রয়মূল্য + ক্ষতি
4.বিক্রয়মূল্য = ক্রয়মূল্য + লাভ
অথবা
বিক্রয়মূল্য = ক্রয়মূল্য-ক্ষতি
_____________________________________________
2.ক্ষতি = ক্রয়মূল্য-বিক্রয়মূল্য
3.ক্রয়মূল্য = বিক্রয়মূল্য-লাভ
অথবা
ক্রয়মূল্য = বিক্রয়মূল্য + ক্ষতি
4.বিক্রয়মূল্য = ক্রয়মূল্য + লাভ
অথবা
বিক্রয়মূল্য = ক্রয়মূল্য-ক্ষতি
_____________________________________________
1-100 পর্যন্ত মৌলিক সংখ্যামনে রাখার সহজ উপায়ঃ
শর্টকাট :- 44 -22 -322-321
★1থেকে100পর্যন্ত মৌলিক সংখ্যা=25টি
★1থেকে10পর্যন্ত মৌলিক সংখ্যা=4টি 2,3,5,7
★11থেকে20পর্যন্ত মৌলিক সংখ্যা=4টি 11,13,17,19
★21থেকে30পর্যন্ত মৌলিক সংখ্যা=2টি 23,29
★31থেকে40পর্যন্ত মৌলিক সংখ্যা=2টি 31,37
★41থেকে50পর্যন্ত মৌলিক সংখ্যা=3টি 41,43,47
★51থেকে 60পর্যন্ত মৌলিক সংখ্যা=2টি 53,59
★61থেকে70পর্যন্ত মৌলিক সংখ্যা=2টি 61,67
★71থেকে80 পর্যন্ত মৌলিক সংখ্যা=3টি 71,73,79
★81থেকে 90পর্যন্ত মৌলিক সংখ্যা=2টি 83,89
★91থেকে100পর্যন্ত মৌলিক সংখ্যা=1টি 97
1-100 পর্যন্ত মৌলিক সংখ্যা 25 টিঃ
2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97
1-100পর্যন্ত মৌলিক সংখ্যার যোগফল
1060।
_____________________________________________
1.কোন কিছুর
গতিবেগ= অতিক্রান্ত দূরত্ব/সময়
2.অতিক্রান্ত দূরত্ব = গতিবেগ×সময়
3.সময়= মোট দূরত্ব/বেগ
4.স্রোতের অনুকূলে নৌকার কার্যকরী গতিবেগ = নৌকার প্রকৃত গতিবেগ + স্রোতের গতিবেগ।
5.স্রোতের প্রতিকূলে নৌকার কার্যকরী গতিবেগ = নৌকার প্রকৃত গতিবেগ – স্রোতের গতিবেগ
_____________________________________________
★1থেকে100পর্যন্ত মৌলিক সংখ্যা=25টি
★1থেকে10পর্যন্ত মৌলিক সংখ্যা=4টি 2,3,5,7
★11থেকে20পর্যন্ত মৌলিক সংখ্যা=4টি 11,13,17,19
★21থেকে30পর্যন্ত মৌলিক সংখ্যা=2টি 23,29
★31থেকে40পর্যন্ত মৌলিক সংখ্যা=2টি 31,37
★41থেকে50পর্যন্ত মৌলিক সংখ্যা=3টি 41,43,47
★51থেকে 60পর্যন্ত মৌলিক সংখ্যা=2টি 53,59
★61থেকে70পর্যন্ত মৌলিক সংখ্যা=2টি 61,67
★71থেকে80 পর্যন্ত মৌলিক সংখ্যা=3টি 71,73,79
★81থেকে 90পর্যন্ত মৌলিক সংখ্যা=2টি 83,89
★91থেকে100পর্যন্ত মৌলিক সংখ্যা=1টি 97
1-100 পর্যন্ত মৌলিক সংখ্যা 25 টিঃ
2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97
1-100পর্যন্ত মৌলিক সংখ্যার যোগফল
1060।
_____________________________________________
1.কোন কিছুর
গতিবেগ= অতিক্রান্ত দূরত্ব/সময়
2.অতিক্রান্ত দূরত্ব = গতিবেগ×সময়
3.সময়= মোট দূরত্ব/বেগ
4.স্রোতের অনুকূলে নৌকার কার্যকরী গতিবেগ = নৌকার প্রকৃত গতিবেগ + স্রোতের গতিবেগ।
5.স্রোতের প্রতিকূলে নৌকার কার্যকরী গতিবেগ = নৌকার প্রকৃত গতিবেগ – স্রোতের গতিবেগ
_____________________________________________
সরল সুদ
যদি আসল=P, সময়=T, সুদের হার=R, সুদ-আসল=A হয়, তাহলে
1.সুদের পরিমাণ= PRT/100
2.আসল= 100×সুদ-আসল(A)/100+TR
_____________________________________________
নৌকার গতি স্রোতের অনুকূলে ঘন্টায় 10 কি.মি. এবং স্রোতের প্রতিকূলে 2 কি.মি.। স্রোতের বেগ কত?
★টেকনিক-
স্রোতের বেগ = (স্রোতের অনুকূলে নৌকার বেগ – স্রোতের প্রতিকূলে নৌকার বেগ) /2
= (10 – 2)/2=
= 4 কি.মি.
একটি নৌকা স্রোতের অনুকূলে ঘন্টায় 8 কি.মি.এবং স্রোতের প্রতিকূলে ঘন্টায় 4 কি.মি.
যায়। নৌকার বেগ কত?
★ টেকনিক-
নৌকার বেগ = (স্রোতের অনুকূলে নৌকার বেগ+স্রোতের প্রতিকূলে নৌকার বেগ)/2
= (8 + 4)/2
=6 কি.মি.
নৌকা ও স্রোতের বেগ ঘন্টায় যথাক্রমে 10 কি.মি. ও 5 কি.মি.। নদীপথে 45 কি.মি. পথ একবার গিয়ে ফিরে আসতে কত সময় লাগবে?
টেকনিক-
★মােট সময় = [(মােট দূরত্ব/ অনুকূলে বেগ) + (মােট দূরত্ব/প্রতিকূলে বেগ)]
উত্তর:স্রোতের অনুকূলে নৌকারবেগ = (10+5) = 15 কি.মি.
স্রোতের প্রতিকূলে নৌকার বেগ = (10-5) = 5কি.মি.
[(45/15) +(45/5)]
= 3+9
=12 ঘন্টা
_____________________________________________
★সমান্তর ধারার ক্রমিক সংখ্যার যোগফল-
(যখন সংখ্যাটি1 থেকে শুরু)1+2+3+4+……+n হলে এরূপ ধারার সমষ্টি= [n(n+1)/2]
n=শেষ সংখ্যা বা পদ সংখ্যা s=যোগফল
প্রশ্নঃ 1+2+3+….+100 =?
সমাধানঃ[n(n+1)/2]
= [100(100+1)/2]
= 5050
★সমান্তর ধারার বর্গ যোগ পদ্ধতির ক্ষেত্রে,-
প্রথম n পদের বর্গের সমষ্টি
S= [n(n+1)2n+1)/6]
(যখন 1² + 2²+ 3² + 4²…….. +n²)
প্রশ্নঃ(1² + 3²+ 5² + ……. +31²) সমান কত?
সমাধানঃ S=[n(n+1)2n+1)/6]
= [31(31+1)2×31+1)/6]
=31
★সমান্তর ধারার ঘনযোগ পদ্ধতির ক্ষেত্রে-
প্রথম n পদের ঘনের সমষ্টি S= [n(n+1)/2]2
(যখন 1³+2³+3³+………….+n³)
প্রশ্নঃ1³+2³+3³+4³+…………+10³=?
সমাধানঃ [n(n+1)/2]2
= [10(10+1)/2]2
= 3025
_____________________________________________
★পদ সংখ্যা ও পদ সংখ্যার সমষ্টি নির্নয়ের ক্ষেত্রেঃ
পদ সংখ্যা N= [(শেষ পদ – প্রথম পদ)/প্রতি পদে বৃদ্ধি] +1
প্রশ্নঃ5+10+15+…………+50=?
সমাধানঃ পদসংখ্যা = [(শেষ পদ – প্রথমপদ)/প্রতি পদে বৃদ্ধি]+1
= [(50 – 5)/5] + 1
=10
সুতরাং পদ সংখ্যার সমষ্টি
= [(5 + 50)/2] ×10
= 275
★ n তম পদ=a + (n-1)d
এখানে, n =পদসংখ্যা, a = 1ম পদ, d= সাধারণ অন্তর
প্রশ্নঃ 5+8+11+14+…….ধারাটির কোন পদ 302?
সমাধানঃ ধরি, n তম পদ =302
বা, a + (n-1)d=302
বা, 5+(n-1)3 =302
বা, 3n=300
বা, n=100
সমান্তর ধারার ক্রমিক বিজোড় সংখ্যার যোগফল-S=M² এখানে,M=মধ্যেমা=(1ম সংখ্যা+শেষ সংখ্যা)/2
প্রশ্নঃ1+3+5+…….+19=কত?
সমাধানঃ S=M²
={(1+19)/2}²
=(20/2)²
=100
_____________________________________________
বর্গ
(1)²=1,(11)²=121,(111)²=12321,(1111)²=1234321,(11111)²=123454321
নিয়ম-যতগুলো 1 পাশাপাশি নিয়ে বর্গ করা হবে, বর্গ ফলে 1 থেকে শুরু করে পর পর সেই সংখ্যা পর্যন্ত লিখতে হবে এবং তারপর সেই সংখ্যার পর থেকে অধঃক্রমে পরপর সংখ্যাগুলো লিখে 1 সংখ্যায় শেষ করতে হবে।
(3)²=9,(33)²=1089,(333)²=110889,(3333)²=11108889,(33333)²=1111088889
যতগুলি 3 পাশাপাশি নিয়ে বর্গ করা হবে, বর্গ ফলে এককের ঘরে 9 এবং 9 এর বাঁদিকে তার চেয়ে (যতগুলো 3 থাকবে) একটি কম সংখ্যক 8, তার পর বাঁদিকে একটি 0 এবং বাঁদিকে 8 এর সমসংখ্যক 1 বসবে।
(6)²=36,(66)²=4356,(666)²=443556,(6666)²=44435556,(66666)²=4444355556
যতগুলি 6 পাশাপাশি নিয়ে বর্গ করা হবে, বর্গ ফলে এককের ঘরে 6 এবং 6 এর বাঁদিকে তার চেয়ে (যতগুলো 6 থাকবে) একটি কম সংখ্যক 5, তার পর বাঁদিকে একটি 3 এবং বাঁদিকে 5 এর সমসংখ্যক 4 বসবে।
(9)²=81,(99)²=9801,(999)²=998001,(9999)²=99980001,(99999)²=9999800001
যতগুলি 9 পাশাপাশি নিয়ে বর্গ করা হবে, বর্গ ফলে এককের ঘরে 1 এবং 1 এর বাঁদিকে তার চেয়ে (যতগুলো 9 থাকবে) একটি কম সংখ্যক 0, তার পর বাঁদিকে একটি 8 এবং বাঁদিকে 0 এর সমসংখ্যক 9 বসবে।
_____________________________________________
জনক≠Father
1)Numerology (সংখ্যাতত্ত্ব)- Pythagoras(পিথাগোরাস)
2) Geometry(জ্যামিতি)- Euclid(ইউক্লিড)
3) Calculus(ক্যালকুলাস)- Newton(নিউটন)
4) Matrix(ম্যাট্রিক্স) – Arthur Cayley(অর্থার ক্যালে)
5)Trigonometry(ত্রিকোণমিতি)Hipparchus(হিপ্পারচাস)
6) Asthmatic(পাটিগণিত) Brahmagupta(ব্রহ্মগুপ্ত)
7) Algebra(বীজগণিত)- Muhammad ibn Musa al-Khwarizmi(মােহাম্মদ মুসা আল খারিজমী)
Logarithm(লগারিদম)- John Napier(জন নেপিয়ার)
9) Set theory(সেট তত্ত্ব)- George Cantor(জর্জ ক্যান্টর)
10) Zero(শূন্য)- Brahmagupta(ব্রহ্মগুপ্ত)
_____________________________________________
1.সুদের পরিমাণ= PRT/100
2.আসল= 100×সুদ-আসল(A)/100+TR
_____________________________________________
নৌকার গতি স্রোতের অনুকূলে ঘন্টায় 10 কি.মি. এবং স্রোতের প্রতিকূলে 2 কি.মি.। স্রোতের বেগ কত?
★টেকনিক-
স্রোতের বেগ = (স্রোতের অনুকূলে নৌকার বেগ – স্রোতের প্রতিকূলে নৌকার বেগ) /2
= (10 – 2)/2=
= 4 কি.মি.
একটি নৌকা স্রোতের অনুকূলে ঘন্টায় 8 কি.মি.এবং স্রোতের প্রতিকূলে ঘন্টায় 4 কি.মি.
যায়। নৌকার বেগ কত?
★ টেকনিক-
নৌকার বেগ = (স্রোতের অনুকূলে নৌকার বেগ+স্রোতের প্রতিকূলে নৌকার বেগ)/2
= (8 + 4)/2
=6 কি.মি.
নৌকা ও স্রোতের বেগ ঘন্টায় যথাক্রমে 10 কি.মি. ও 5 কি.মি.। নদীপথে 45 কি.মি. পথ একবার গিয়ে ফিরে আসতে কত সময় লাগবে?
টেকনিক-
★মােট সময় = [(মােট দূরত্ব/ অনুকূলে বেগ) + (মােট দূরত্ব/প্রতিকূলে বেগ)]
উত্তর:স্রোতের অনুকূলে নৌকারবেগ = (10+5) = 15 কি.মি.
স্রোতের প্রতিকূলে নৌকার বেগ = (10-5) = 5কি.মি.
[(45/15) +(45/5)]
= 3+9
=12 ঘন্টা
_____________________________________________
★সমান্তর ধারার ক্রমিক সংখ্যার যোগফল-
(যখন সংখ্যাটি1 থেকে শুরু)1+2+3+4+……+n হলে এরূপ ধারার সমষ্টি= [n(n+1)/2]
n=শেষ সংখ্যা বা পদ সংখ্যা s=যোগফল
প্রশ্নঃ 1+2+3+….+100 =?
সমাধানঃ[n(n+1)/2]
= [100(100+1)/2]
= 5050
★সমান্তর ধারার বর্গ যোগ পদ্ধতির ক্ষেত্রে,-
প্রথম n পদের বর্গের সমষ্টি
S= [n(n+1)2n+1)/6]
(যখন 1² + 2²+ 3² + 4²…….. +n²)
প্রশ্নঃ(1² + 3²+ 5² + ……. +31²) সমান কত?
সমাধানঃ S=[n(n+1)2n+1)/6]
= [31(31+1)2×31+1)/6]
=31
★সমান্তর ধারার ঘনযোগ পদ্ধতির ক্ষেত্রে-
প্রথম n পদের ঘনের সমষ্টি S= [n(n+1)/2]2
(যখন 1³+2³+3³+………….+n³)
প্রশ্নঃ1³+2³+3³+4³+…………+10³=?
সমাধানঃ [n(n+1)/2]2
= [10(10+1)/2]2
= 3025
_____________________________________________
★পদ সংখ্যা ও পদ সংখ্যার সমষ্টি নির্নয়ের ক্ষেত্রেঃ
পদ সংখ্যা N= [(শেষ পদ – প্রথম পদ)/প্রতি পদে বৃদ্ধি] +1
প্রশ্নঃ5+10+15+…………+50=?
সমাধানঃ পদসংখ্যা = [(শেষ পদ – প্রথমপদ)/প্রতি পদে বৃদ্ধি]+1
= [(50 – 5)/5] + 1
=10
সুতরাং পদ সংখ্যার সমষ্টি
= [(5 + 50)/2] ×10
= 275
★ n তম পদ=a + (n-1)d
এখানে, n =পদসংখ্যা, a = 1ম পদ, d= সাধারণ অন্তর
প্রশ্নঃ 5+8+11+14+…….ধারাটির কোন পদ 302?
সমাধানঃ ধরি, n তম পদ =302
বা, a + (n-1)d=302
বা, 5+(n-1)3 =302
বা, 3n=300
বা, n=100
সমান্তর ধারার ক্রমিক বিজোড় সংখ্যার যোগফল-S=M² এখানে,M=মধ্যেমা=(1ম সংখ্যা+শেষ সংখ্যা)/2
প্রশ্নঃ1+3+5+…….+19=কত?
সমাধানঃ S=M²
={(1+19)/2}²
=(20/2)²
=100
_____________________________________________
বর্গ
(1)²=1,(11)²=121,(111)²=12321,(1111)²=1234321,(11111)²=123454321
নিয়ম-যতগুলো 1 পাশাপাশি নিয়ে বর্গ করা হবে, বর্গ ফলে 1 থেকে শুরু করে পর পর সেই সংখ্যা পর্যন্ত লিখতে হবে এবং তারপর সেই সংখ্যার পর থেকে অধঃক্রমে পরপর সংখ্যাগুলো লিখে 1 সংখ্যায় শেষ করতে হবে।
(3)²=9,(33)²=1089,(333)²=110889,(3333)²=11108889,(33333)²=1111088889
যতগুলি 3 পাশাপাশি নিয়ে বর্গ করা হবে, বর্গ ফলে এককের ঘরে 9 এবং 9 এর বাঁদিকে তার চেয়ে (যতগুলো 3 থাকবে) একটি কম সংখ্যক 8, তার পর বাঁদিকে একটি 0 এবং বাঁদিকে 8 এর সমসংখ্যক 1 বসবে।
(6)²=36,(66)²=4356,(666)²=443556,(6666)²=44435556,(66666)²=4444355556
যতগুলি 6 পাশাপাশি নিয়ে বর্গ করা হবে, বর্গ ফলে এককের ঘরে 6 এবং 6 এর বাঁদিকে তার চেয়ে (যতগুলো 6 থাকবে) একটি কম সংখ্যক 5, তার পর বাঁদিকে একটি 3 এবং বাঁদিকে 5 এর সমসংখ্যক 4 বসবে।
(9)²=81,(99)²=9801,(999)²=998001,(9999)²=99980001,(99999)²=9999800001
যতগুলি 9 পাশাপাশি নিয়ে বর্গ করা হবে, বর্গ ফলে এককের ঘরে 1 এবং 1 এর বাঁদিকে তার চেয়ে (যতগুলো 9 থাকবে) একটি কম সংখ্যক 0, তার পর বাঁদিকে একটি 8 এবং বাঁদিকে 0 এর সমসংখ্যক 9 বসবে।
_____________________________________________
জনক≠Father
1)Numerology (সংখ্যাতত্ত্ব)- Pythagoras(পিথাগোরাস)
2) Geometry(জ্যামিতি)- Euclid(ইউক্লিড)
3) Calculus(ক্যালকুলাস)- Newton(নিউটন)
4) Matrix(ম্যাট্রিক্স) – Arthur Cayley(অর্থার ক্যালে)
5)Trigonometry(ত্রিকোণমিতি)Hipparchus(হিপ্পারচাস)
6) Asthmatic(পাটিগণিত) Brahmagupta(ব্রহ্মগুপ্ত)
7) Algebra(বীজগণিত)- Muhammad ibn Musa al-Khwarizmi(মােহাম্মদ মুসা আল খারিজমী)
Logarithm(লগারিদম)- John Napier(জন নেপিয়ার)
9) Set theory(সেট তত্ত্ব)- George Cantor(জর্জ ক্যান্টর)
10) Zero(শূন্য)- Brahmagupta(ব্রহ্মগুপ্ত)
_____________________________________________
অঙ্কের ইংরেজি শব্দ
পাটিগণিত ও পরিমিতি
অঙ্ক-Digit
অঙ্ক-Digit
অনুপাত-Ratio
মৌলিক সংখ্যা—Prime number
পূর্ণবর্গ-Perfect square
উৎপাদক-Factor
ক্রমিক সমানুপাতী—Continued proportion
ক্রয়মূল্য -Cost price
ক্ষতি-Loss
গড়-Average
গতিবেগ-Velocity
গুণফল-Product
গ,সা,গু-Highest Common Factor
ঘাত-Power
ঘনমূল—Cube root
ঘনক-Cube
ঘনফল-Volume
পূর্নসংখ্যা-Integer
চাপ-Arc
চোঙ-Cylinder
জ্যা-Chord
জোড় সংখ্যা-Even number
ধ্রুবক-Constant
পরিসীমা-Perimeter
বাস্তব-Real
বর্গমূল-Square root
ব্যস্ত অনুপাত—Inverse ratio
বিজোড়সংখ্যা—Odd number
বিক্রয়মূল্য -Selling price
বীজগণিত—Algebra
মূলদ Rational
মধ্য সমানুপাতী -Mean proportional
যােগফল=Sum
ল,সা,গু-Lowest Common Multiple
ল,সা,গু-Lowest Common Multiple
লব-Numerator
শতকরা-Percentage
সমানুপাত-Proportion
সমানুপাতী-Proportional
সুদ-Interest
হর-Denominator
_____________________________________________
_____________________________________________
জ্যামিতি
অতিভূজ—Hypotenuse, অন্তঃকোণ-Internal angle, অর্ধবৃত্ত-Semi-circle, অন্ত ব্যাসার্ধ-In-radius, আয়তক্ষেত্র-Rectangle, উচ্চতা-Height, কর্ণ–Diagonal, কোণ-Angle, কেন্দ্র-Centre, গােলক-Sphere, চতুর্ভুজ-Quadrilateral, চোঙ-Cylinder,জ্যামিতি-Geometry,দৈর্ঘ্য-Length, পঞ্চভূজ -Pentagon, প্রস্থ-Breadth
পূরককোন-Complementary angles, বাহু-Side, বৃত্ত-Circle, ব্যাসার্ধ-Radius, ব্যাস-Diameter, বহুভূজ-Polygon, বর্গক্ষেত্র—Square, বহি:স্থ External, শঙ্কু-Cone, সমকোণ-Right angle, সমবাহু ত্রিভূজ-Equilateral triangle, অসমবাহু ত্রিভূজ—Scalene triangle, সমদ্বিবাহু ত্রিভূজ-isosceles Triangle,সমকোণী ত্রিভুজ Right angled triangle, সূক্ষ্মকোণী-Acute angled triangle, স্থূলকোণী ত্রিভুজ Obtuse angled triangle, সমান্তরাল—Parallel, সরলরেখা—Straight line, সম্পূরক কোণ—Supplementary angles, সদৃশকোণী-Equiangular
_____________________________________________
পূরককোন-Complementary angles, বাহু-Side, বৃত্ত-Circle, ব্যাসার্ধ-Radius, ব্যাস-Diameter, বহুভূজ-Polygon, বর্গক্ষেত্র—Square, বহি:স্থ External, শঙ্কু-Cone, সমকোণ-Right angle, সমবাহু ত্রিভূজ-Equilateral triangle, অসমবাহু ত্রিভূজ—Scalene triangle, সমদ্বিবাহু ত্রিভূজ-isosceles Triangle,সমকোণী ত্রিভুজ Right angled triangle, সূক্ষ্মকোণী-Acute angled triangle, স্থূলকোণী ত্রিভুজ Obtuse angled triangle, সমান্তরাল—Parallel, সরলরেখা—Straight line, সম্পূরক কোণ—Supplementary angles, সদৃশকোণী-Equiangular
_____________________________________________
রোমান সংখ্যা≠ Roman numerals )
1:I
2: II
3: III
4: IV
5: V
6: VI
7: VII
8: VIII
9: IX
10: X
11: XI
12: XII
13: XIII
14: XIV
15: XV
16: XVI
17: XVII
18: XVIII
19: XIX
20: XX
30: XXX
40: XL
50: L
60: LX
70: LXX
80: LXXX
90: XC
100: C
200: CC
300: CCC
400: CD
500: D
600: DC
700: DCC
800: DCCC
900: CM
1000:M
_____________________________________________
2: II
3: III
4: IV
5: V
6: VI
7: VII
8: VIII
9: IX
10: X
11: XI
12: XII
13: XIII
14: XIV
15: XV
16: XVI
17: XVII
18: XVIII
19: XIX
20: XX
30: XXX
40: XL
50: L
60: LX
70: LXX
80: LXXX
90: XC
100: C
200: CC
300: CCC
400: CD
500: D
600: DC
700: DCC
800: DCCC
900: CM
1000:M
_____________________________________________
1. জোড় সংখ্যা + জোড় সংখ্যা = জোড়
সংখ্যা।
যেমনঃ 2 + 6 = 8.
2. জোড় সংখ্যা + বিজোড় সংখ্যা =
বিজোড় সংখ্যা।
যেমনঃ 6 + 7 = 13.
3. বিজোড় সংখ্যা + বিজোড় সংখ্যা =
জোড় সংখ্যা।
যেমনঃ 3 + 5 = 8.
4. জোড় সংখ্যা × জোড় সংখ্যা = জোড়
সংখ্যা।
যেমনঃ 6 × 8 = 48.
5.জোড় সংখ্যা × বিজোড় সংখ্যা = জোড়
সংখ্যা।
যেমনঃ 6 × 7 = 42
6.বিজোড় সংখ্যা × বিজোড় সংখ্যা =
বিজোড় সংখ্যা।
যেমনঃ 3 × 9 = 27
_____________________________________________
ক্যালকুলেটর ছাড়া যে কোন সংখ্যাকে ভাগ করার একটি effective টেকনিক!
ক্যালকুলেটর ছাড়া যে কোন সংখ্যাকে 5 দিয়ে ভাগ করার একটি effective টেকনিক
1. 13/5= 2.6 (ক্যালকুলেটর ছাড়া মাত্র ৩ সেকেন্ডে এটি সমাধান করা যায়)
যেমনঃ 2 + 6 = 8.
2. জোড় সংখ্যা + বিজোড় সংখ্যা =
বিজোড় সংখ্যা।
যেমনঃ 6 + 7 = 13.
3. বিজোড় সংখ্যা + বিজোড় সংখ্যা =
জোড় সংখ্যা।
যেমনঃ 3 + 5 = 8.
4. জোড় সংখ্যা × জোড় সংখ্যা = জোড়
সংখ্যা।
যেমনঃ 6 × 8 = 48.
5.জোড় সংখ্যা × বিজোড় সংখ্যা = জোড়
সংখ্যা।
যেমনঃ 6 × 7 = 42
6.বিজোড় সংখ্যা × বিজোড় সংখ্যা =
বিজোড় সংখ্যা।
যেমনঃ 3 × 9 = 27
_____________________________________________
ক্যালকুলেটর ছাড়া যে কোন সংখ্যাকে ভাগ করার একটি effective টেকনিক!
ক্যালকুলেটর ছাড়া যে কোন সংখ্যাকে 5 দিয়ে ভাগ করার একটি effective টেকনিক
1. 13/5= 2.6 (ক্যালকুলেটর ছাড়া মাত্র ৩ সেকেন্ডে এটি সমাধান করা যায়)
★টেকনিকঃ
5 দিয়ে যে সংখ্যাকে ভাগ করবেন তাকে 2 দিয়ে গুণ করুন তারপর ডানদিক থেকে 1 ঘর আগে দশমিক বসিয়ে দিন। কাজ শেষ!!! 13*2=26, তারপর থেকে 1 ঘর আগে দশমিক বসিয়ে দিলে 2.6 ।
2. 213/5=42.6 (213*2=426)
0.03/5= 0.006 (0.03*2=0.06 যার একঘর আগে দশমিক বসালে হয় 0.006) 333,333,333/5= 66,666,666.6 (এই গুলা করতে আবার ক্যালকুলেটর লাগে না কি!)
3. 12,121,212/5= 2,424,242.4
এবার নিজে ইচ্ছেমত 5 দিয়ে যে কোন সংখ্যাকে ভাগ করে দেখুন
ক্যালকুলেটর ছাড়া যে কোন সংখ্যাকে 25 দিয়ে ভাগ করার একটি effective টেকনিক
1. 13/25=0.52 (ক্যালকুলেটর ছাড়া এটিও সমাধান করা যায়)
5 দিয়ে যে সংখ্যাকে ভাগ করবেন তাকে 2 দিয়ে গুণ করুন তারপর ডানদিক থেকে 1 ঘর আগে দশমিক বসিয়ে দিন। কাজ শেষ!!! 13*2=26, তারপর থেকে 1 ঘর আগে দশমিক বসিয়ে দিলে 2.6 ।
2. 213/5=42.6 (213*2=426)
0.03/5= 0.006 (0.03*2=0.06 যার একঘর আগে দশমিক বসালে হয় 0.006) 333,333,333/5= 66,666,666.6 (এই গুলা করতে আবার ক্যালকুলেটর লাগে না কি!)
3. 12,121,212/5= 2,424,242.4
এবার নিজে ইচ্ছেমত 5 দিয়ে যে কোন সংখ্যাকে ভাগ করে দেখুন
ক্যালকুলেটর ছাড়া যে কোন সংখ্যাকে 25 দিয়ে ভাগ করার একটি effective টেকনিক
1. 13/25=0.52 (ক্যালকুলেটর ছাড়া এটিও সমাধান করা যায়)
★টেকনিকঃ
25 দিয়ে যে সংখ্যাকে ভাগ করবেন তাকে 4 দিয়ে গুণ করুন তারপর ডানদিক থেকে 2 ঘর আগে দশমিক বসিয়ে দিন। 13*4=52, তারপর থেকে 2 ঘর আগে দশমিক বসিয়ে দিলে 0.52 ।
02. 210/25 = 8.40
03. 0.03/25 = 0.0012
04. 222,222/25 = 8,888.88
05. 13,121,312/25 = 524,852.48
ক্যালকুলেটর ছাড়া যে কোন সংখ্যাকে 125 দিয়ে ভাগ করার একটি effective টেকনিক
01. 7/125 = 0.056
25 দিয়ে যে সংখ্যাকে ভাগ করবেন তাকে 4 দিয়ে গুণ করুন তারপর ডানদিক থেকে 2 ঘর আগে দশমিক বসিয়ে দিন। 13*4=52, তারপর থেকে 2 ঘর আগে দশমিক বসিয়ে দিলে 0.52 ।
02. 210/25 = 8.40
03. 0.03/25 = 0.0012
04. 222,222/25 = 8,888.88
05. 13,121,312/25 = 524,852.48
ক্যালকুলেটর ছাড়া যে কোন সংখ্যাকে 125 দিয়ে ভাগ করার একটি effective টেকনিক
01. 7/125 = 0.056
★টেকনিকঃ
125 দিয়ে যে সংখ্যাকে ভাগ করবেন তাকে 8 দিয়ে গুণ করুন তারপর ডানদিক থেকে 3 ঘর আগে দশমিক বসিয়ে দিন। কাজ শেষ! 7*8=56, তারপর থেকে 3 ঘর আগে দশমিক বসিয়ে দিলে 0.056 ।
02. 111/125 = 0.888
03. 600/125 = 4.800
_____________________________________________
আসুন সহজে করি
টপিকঃ 10 সেকেন্ডে বর্গমূল নির্ণয়।
বিঃদ্রঃ যে সংখ্যাগুলোর বর্গমূল 1 থেকে 99 এর মধ্যে এই পদ্ধতিতে তাদের বের করা যাবে খুব সহজেই। প্রশ্নে অবশ্যই পূর্ণবর্গ সংখ্যা থাকা লাগবে। অর্থাৎ উত্তর যদি দশমিক ভগ্নাংশ আসে তবে এই পদ্বতি কাজে আসবেনা।
অবশ্যই মনোযোগ দিয়ে পড়তে হবে এবং প্র্যাকটিস করতে হবে। নয়ত ভুলে যাবেন।
তবে আসুন শুরু করা যাক। শুরুতে 1 থেকে 9 পর্যন্ত সংখ্যার বর্গ মুখস্থ করে নিই। আশা করি এগুলো সবাই জানেন। সুবিধার জন্যে আমি নিচে লিখে দিচ্ছি-
1 square = 1, 2 square = 4
3 square = 9, 4 square = 16
5 square = 25, 6 square = 36
7 square = 49, 8 square = 64
9 square = 81
এখানে প্রত্যেকটা বর্গ সংখ্যার দিকে খেয়াল করলে দেখবেন, সবার শেষের অংকটির ক্ষেত্রে –
★1 আর 9 এর বর্গের শেষ অংক মিল আছে (1, 81)
★2 আর 8 এর বর্গের শেষ অংক মিল আছে(4, 64)
★3 আর 7 এর বর্গের শেষ অংক মিল আছে (9, 49);
★4 আর 6 এর বর্গের শেষ অংক মিল আছে(16, 36);
এবং 5 একা frown emoticon
এদ্দুর পর্যন্ত বুঝতে যদি কোন সমস্যা থাকে তবে আবার পড়ে নিন।
উদাহরণ:- 576 এর বর্গমূল নির্ণয় করুন।
প্রথম ধাপঃ যে সংখ্যার বর্গমূল নির্ণয় করতে হবে তার এককের ঘরের অংকটি দেখবেন। এক্ষেত্রে তা হচ্ছে ‘6’ ।
দ্বিতীয় ধাপঃ উপরের লিস্ট থেকে সে সংখ্যার বর্গের শেষ অংক 6 তাদের নিবেন। এক্ষেত্রে 4 এবং 6 । আবার বলি, খেয়াল করুন- 4 এবং 6 এর বর্গ যথাক্রমে 16 এবং 36; যাদের এককের ঘরের অংক কিনা ‘6’ । বুঝতে পেরেছেন? না বুঝলে আবার পড়ে দেখুন।
তৃতীয় ধাপঃ 4 / 6 লিখে রাখুন খাতায়। (আমরা উত্তরের এককের ঘরের অংক পেয়ে গেছি, যা হচ্ছে 4 অথবা 6; কিন্তু কোনটা? এর উত্তর পাবেন অষ্টম ধাপে, পড়তে থাকুন …)
চতুর্থ ধাপঃ প্রশ্নের একক আর দশকের অংক বাদ দিয়ে বাকি অংকের দিকে তাকান। এক্ষেত্রে এটি হচ্ছে 5 ।
পঞ্চম ধাপঃ উপরের লিস্ট থেকে 5 এর কাছাকাছি যে বর্গ সংখ্যাটি আছে তার বর্গমূলটা নিন। এক্ষেত্রে 4, যা কিনা 2 এর বর্গ। (আমরা উত্তরের দশকের ঘরের অংক পেয়ে গেছি, যা হচ্ছে 2 )
ষষ্ঠ ধাপঃ 2 এর সাথে তার পরের সংখ্যা গুন করুন। অর্থাৎ 2*3=6
সপ্তম ধাপঃ চতুর্থ ধাপে পাওয়া সংখ্যাটা (5) ষষ্ঠ ধাপে পাওয়া সংখ্যার (6) চেয়ে ছোট নাকি বড় দেখুন। ছোট হলে তৃতীয় ধাপে পাওয়া সংখ্যার ছোটটি নেব, বড় হলে বড়টি। (বুঝতে পেরেছেন? নয়ত আবার পড়ুন)
অষ্টম ধাপঃ আমাদের উদাহরণের ক্ষেত্রে 5 হচ্ছে 6 এর ছোট, তাই আমরা 4 / 6 মধ্যে ছোট সংখ্যা অর্থাৎ 4 নেব।
নবম ধাপঃ মনে আছে, পঞ্চম ধাপে দশকের ঘরের অংক পেয়েছিলাম 2 এবার পেয়েছি এককের ঘরের অংক 4 । তাই উত্তর হবে 24
কঠিন মনে হচ্ছে? একদমই না, কয়েকটা প্র্যাকটিস করে দেখুন। আমার মতে খুব বেশি সময় লাগার কথা না।
উদাহরণ:- 4225 এর বর্গমূল বের করুন।
মনে আছে 5 যে একা ছিল? সে একা থাকায় আপনার কাজ কিন্তু অনেক সোজা হয়ে গেছে। দেখুন কেনো প্রশ্নের শেষ অংক 5 হওয়ায় উত্তরের এককের ঘরের অংক হবে অবশ্যই 5 ।
– প্রশ্নের একক ও দশকের ঘরের অংক বাদ দিয়ে দিলে বাকি থাকে 42 ।
– 42 এর সবচেয়ে কাছের পূর্ণবর্গ সংখ্যা হচ্ছে 36, যার বর্গমূল হচ্ছে 6 । তাই উত্তর হচ্ছে 65
_____________________________________________
1. পাঁচ অঙ্কের ক্ষুদ্রতম সংখ্যা এবং চার অঙ্কের বৃহত্তম সংখ্যার অন্তর কত?
উঃ ১।(১০০০০-৯৯৯৯)
2. ০,১,২ এবং ৩ দ্বারা গঠিত চার অঙ্কের বৃহত্তম এবং ক্ষুদ্রতম সংখ্যার বিয়োগফল-
উঃ ২১৮৭।(৩২১০-১০২৩)
3.যদি ১ থেকে ১০০ পর্যন্ত গণনা করা হয় তবে এর মধ্যে কতটি ৫ পাবো।
উঃ ২০টি।
*১থেকে ১০০ পর্যন্ত ০=১১টি
১ থেকে ১০০ পর্যন্ত ১=২১টি
১ থেকে ১০০ পর্যন্ত ২থেকে ৯ পর্যন্ত অঙ্কগুলো পাওয়া যাবে=২০টি।
4. ৭২ সংখ্যাটির মোট ভাজক ?
উঃ ১২টি
*৭২=১×৭২=২×৩৬=৩×২৪=৪×১৮=৬×১২=৮×৯
৭২ সংখ্যাটি ভাজক=১,২,৩,৪,৬,৮,৯,১২,১৮,২৪,৩৬,৭২।
5. ১ থেকে ১০০ পর্যন্ত মৌলিক সংখ্যা কতটি?
উঃ ২৫টি।
6. (০.০১)^২ এর মান কোন ভগ্নাংশটির সমান
উঃ ১/১০০০০
*(০.০১)^২=০.০১×০.০১
=০.০০০১
=১/১০০০০
7. দুইটি সংখ্যার সমষ্টি ৭০ এবং অন্তরফল ১০ হলে বড় সংখ্যাটি
উঃ ৪০
*বড় সংখ্যাটি=৭০+১০
=৮০÷২
=৪০
8. একটি সংখ্যা ৭৪২ থেকে যত বড় ৮৩০ থেকে তত ছোট। সংখ্যাটি কত?
উঃ ৭৮৬
*নির্ণয়ে সংখ্যা=৭৪২+৮৩০
=১৫৭২÷২
=৭৮৬
9.দুইটি সংখ্যার গুণফল ১৫৩৬ সংখ্যা দুটির ল সা গু ৯৬ হলে গ সা গু কত?
উঃ ১৬
* ল সা গু × গ সা গু = গুনফল
৯৬×গ সা গু = ১৫৩৬
গ সা গু = ১৫৩৬÷৯৬
=১৬
10. অনুপাত কি?
উঃ একটি ভগ্নাংশ
11. ২৪ কে ৭:৬ অনুপাতে বৃদ্ধি করলে নতুন সংখ্যা হবে?
উঃ ২৮
*নতুন সংখ্যা÷২৪=৭/৬
নতুন সংখ্যা =৭×২৪÷৬
=৭×৪
=২৮
12. ১ থেকে ৪৯ পর্যন্ত ক্রমিক সংখ্যা গুলোর গড় কত?
উঃ ২৫
*নির্ণয়ে গড়=
শেষপদ +প্রথম পদ÷২
৪৯+১=৫০÷২=২৫
13.১ থেকে ৯৯ পর্যন্ত সংখ্যাগুলোর সমষ্টি কত?
উঃ ৪৯৫০
*সমষ্টি=n(n+১)÷২
=৯৯(৯৯+১)÷২
=৯৯×১০০÷২
=৯৯×৫০
=৪৯৫০
—————————————————–
1 ফুট = 12 ইঞ্চি
1 গজ = 3 ফুট
1 মাইল = ১৭৬০ গজ
1 মাইল ≈ 1.61 কিলোমিটার
1 ইঞ্চি = 2.54 সেন্টিমিটার
1 ফুট = 0.3048 মিটার
1 মিটার = 1,000 মিলিমিটার
1 মিটার = 100 সেন্টিমিটার
1 কিলোমিটার = 1,000 মিটার
1 কিলোমিটার ≈ 0.62 মাইল
ক্ষেত্রঃ
1 বর্গ ফুট = 144 বর্গ ইঞ্চি
1 বর্গ গজ = 9 বর্গ ফুট
1 একর = 43560 বর্গ ফুট
আয়তনঃ
1 লিটার ≈ 0.264 গ্যালন
1 ঘন ফুট = 1.728 ঘন ইঞ্চি
1 ঘন গজ = 27 ঘন ফুট
ওজনঃ
1 আউন্স ≈ 28.350 গ্রাম
1 cvDÛ= 16 আউন্স
1 cvDÛ ≈ 453.592 গ্রাম
1 এক গ্রামের এর্কসহস্রাংশ = 0.001গ্রাম
1 কিলোগ্রাম = 1,000 গ্রাম
1 কিলোগ্রাম ≈ 2.2 পাউন্ড
1 টন = 2,200 পাউন্ড
125 দিয়ে যে সংখ্যাকে ভাগ করবেন তাকে 8 দিয়ে গুণ করুন তারপর ডানদিক থেকে 3 ঘর আগে দশমিক বসিয়ে দিন। কাজ শেষ! 7*8=56, তারপর থেকে 3 ঘর আগে দশমিক বসিয়ে দিলে 0.056 ।
02. 111/125 = 0.888
03. 600/125 = 4.800
_____________________________________________
আসুন সহজে করি
টপিকঃ 10 সেকেন্ডে বর্গমূল নির্ণয়।
বিঃদ্রঃ যে সংখ্যাগুলোর বর্গমূল 1 থেকে 99 এর মধ্যে এই পদ্ধতিতে তাদের বের করা যাবে খুব সহজেই। প্রশ্নে অবশ্যই পূর্ণবর্গ সংখ্যা থাকা লাগবে। অর্থাৎ উত্তর যদি দশমিক ভগ্নাংশ আসে তবে এই পদ্বতি কাজে আসবেনা।
অবশ্যই মনোযোগ দিয়ে পড়তে হবে এবং প্র্যাকটিস করতে হবে। নয়ত ভুলে যাবেন।
তবে আসুন শুরু করা যাক। শুরুতে 1 থেকে 9 পর্যন্ত সংখ্যার বর্গ মুখস্থ করে নিই। আশা করি এগুলো সবাই জানেন। সুবিধার জন্যে আমি নিচে লিখে দিচ্ছি-
1 square = 1, 2 square = 4
3 square = 9, 4 square = 16
5 square = 25, 6 square = 36
7 square = 49, 8 square = 64
9 square = 81
এখানে প্রত্যেকটা বর্গ সংখ্যার দিকে খেয়াল করলে দেখবেন, সবার শেষের অংকটির ক্ষেত্রে –
★1 আর 9 এর বর্গের শেষ অংক মিল আছে (1, 81)
★2 আর 8 এর বর্গের শেষ অংক মিল আছে(4, 64)
★3 আর 7 এর বর্গের শেষ অংক মিল আছে (9, 49);
★4 আর 6 এর বর্গের শেষ অংক মিল আছে(16, 36);
এবং 5 একা frown emoticon
এদ্দুর পর্যন্ত বুঝতে যদি কোন সমস্যা থাকে তবে আবার পড়ে নিন।
উদাহরণ:- 576 এর বর্গমূল নির্ণয় করুন।
প্রথম ধাপঃ যে সংখ্যার বর্গমূল নির্ণয় করতে হবে তার এককের ঘরের অংকটি দেখবেন। এক্ষেত্রে তা হচ্ছে ‘6’ ।
দ্বিতীয় ধাপঃ উপরের লিস্ট থেকে সে সংখ্যার বর্গের শেষ অংক 6 তাদের নিবেন। এক্ষেত্রে 4 এবং 6 । আবার বলি, খেয়াল করুন- 4 এবং 6 এর বর্গ যথাক্রমে 16 এবং 36; যাদের এককের ঘরের অংক কিনা ‘6’ । বুঝতে পেরেছেন? না বুঝলে আবার পড়ে দেখুন।
তৃতীয় ধাপঃ 4 / 6 লিখে রাখুন খাতায়। (আমরা উত্তরের এককের ঘরের অংক পেয়ে গেছি, যা হচ্ছে 4 অথবা 6; কিন্তু কোনটা? এর উত্তর পাবেন অষ্টম ধাপে, পড়তে থাকুন …)
চতুর্থ ধাপঃ প্রশ্নের একক আর দশকের অংক বাদ দিয়ে বাকি অংকের দিকে তাকান। এক্ষেত্রে এটি হচ্ছে 5 ।
পঞ্চম ধাপঃ উপরের লিস্ট থেকে 5 এর কাছাকাছি যে বর্গ সংখ্যাটি আছে তার বর্গমূলটা নিন। এক্ষেত্রে 4, যা কিনা 2 এর বর্গ। (আমরা উত্তরের দশকের ঘরের অংক পেয়ে গেছি, যা হচ্ছে 2 )
ষষ্ঠ ধাপঃ 2 এর সাথে তার পরের সংখ্যা গুন করুন। অর্থাৎ 2*3=6
সপ্তম ধাপঃ চতুর্থ ধাপে পাওয়া সংখ্যাটা (5) ষষ্ঠ ধাপে পাওয়া সংখ্যার (6) চেয়ে ছোট নাকি বড় দেখুন। ছোট হলে তৃতীয় ধাপে পাওয়া সংখ্যার ছোটটি নেব, বড় হলে বড়টি। (বুঝতে পেরেছেন? নয়ত আবার পড়ুন)
অষ্টম ধাপঃ আমাদের উদাহরণের ক্ষেত্রে 5 হচ্ছে 6 এর ছোট, তাই আমরা 4 / 6 মধ্যে ছোট সংখ্যা অর্থাৎ 4 নেব।
নবম ধাপঃ মনে আছে, পঞ্চম ধাপে দশকের ঘরের অংক পেয়েছিলাম 2 এবার পেয়েছি এককের ঘরের অংক 4 । তাই উত্তর হবে 24
কঠিন মনে হচ্ছে? একদমই না, কয়েকটা প্র্যাকটিস করে দেখুন। আমার মতে খুব বেশি সময় লাগার কথা না।
উদাহরণ:- 4225 এর বর্গমূল বের করুন।
মনে আছে 5 যে একা ছিল? সে একা থাকায় আপনার কাজ কিন্তু অনেক সোজা হয়ে গেছে। দেখুন কেনো প্রশ্নের শেষ অংক 5 হওয়ায় উত্তরের এককের ঘরের অংক হবে অবশ্যই 5 ।
– প্রশ্নের একক ও দশকের ঘরের অংক বাদ দিয়ে দিলে বাকি থাকে 42 ।
– 42 এর সবচেয়ে কাছের পূর্ণবর্গ সংখ্যা হচ্ছে 36, যার বর্গমূল হচ্ছে 6 । তাই উত্তর হচ্ছে 65
_____________________________________________
1. পাঁচ অঙ্কের ক্ষুদ্রতম সংখ্যা এবং চার অঙ্কের বৃহত্তম সংখ্যার অন্তর কত?
উঃ ১।(১০০০০-৯৯৯৯)
2. ০,১,২ এবং ৩ দ্বারা গঠিত চার অঙ্কের বৃহত্তম এবং ক্ষুদ্রতম সংখ্যার বিয়োগফল-
উঃ ২১৮৭।(৩২১০-১০২৩)
3.যদি ১ থেকে ১০০ পর্যন্ত গণনা করা হয় তবে এর মধ্যে কতটি ৫ পাবো।
উঃ ২০টি।
*১থেকে ১০০ পর্যন্ত ০=১১টি
১ থেকে ১০০ পর্যন্ত ১=২১টি
১ থেকে ১০০ পর্যন্ত ২থেকে ৯ পর্যন্ত অঙ্কগুলো পাওয়া যাবে=২০টি।
4. ৭২ সংখ্যাটির মোট ভাজক ?
উঃ ১২টি
*৭২=১×৭২=২×৩৬=৩×২৪=৪×১৮=৬×১২=৮×৯
৭২ সংখ্যাটি ভাজক=১,২,৩,৪,৬,৮,৯,১২,১৮,২৪,৩৬,৭২।
5. ১ থেকে ১০০ পর্যন্ত মৌলিক সংখ্যা কতটি?
উঃ ২৫টি।
6. (০.০১)^২ এর মান কোন ভগ্নাংশটির সমান
উঃ ১/১০০০০
*(০.০১)^২=০.০১×০.০১
=০.০০০১
=১/১০০০০
7. দুইটি সংখ্যার সমষ্টি ৭০ এবং অন্তরফল ১০ হলে বড় সংখ্যাটি
উঃ ৪০
*বড় সংখ্যাটি=৭০+১০
=৮০÷২
=৪০
8. একটি সংখ্যা ৭৪২ থেকে যত বড় ৮৩০ থেকে তত ছোট। সংখ্যাটি কত?
উঃ ৭৮৬
*নির্ণয়ে সংখ্যা=৭৪২+৮৩০
=১৫৭২÷২
=৭৮৬
9.দুইটি সংখ্যার গুণফল ১৫৩৬ সংখ্যা দুটির ল সা গু ৯৬ হলে গ সা গু কত?
উঃ ১৬
* ল সা গু × গ সা গু = গুনফল
৯৬×গ সা গু = ১৫৩৬
গ সা গু = ১৫৩৬÷৯৬
=১৬
10. অনুপাত কি?
উঃ একটি ভগ্নাংশ
11. ২৪ কে ৭:৬ অনুপাতে বৃদ্ধি করলে নতুন সংখ্যা হবে?
উঃ ২৮
*নতুন সংখ্যা÷২৪=৭/৬
নতুন সংখ্যা =৭×২৪÷৬
=৭×৪
=২৮
12. ১ থেকে ৪৯ পর্যন্ত ক্রমিক সংখ্যা গুলোর গড় কত?
উঃ ২৫
*নির্ণয়ে গড়=
শেষপদ +প্রথম পদ÷২
৪৯+১=৫০÷২=২৫
13.১ থেকে ৯৯ পর্যন্ত সংখ্যাগুলোর সমষ্টি কত?
উঃ ৪৯৫০
*সমষ্টি=n(n+১)÷২
=৯৯(৯৯+১)÷২
=৯৯×১০০÷২
=৯৯×৫০
=৪৯৫০
—————————————————–
1 ফুট = 12 ইঞ্চি
1 গজ = 3 ফুট
1 মাইল = ১৭৬০ গজ
1 মাইল ≈ 1.61 কিলোমিটার
1 ইঞ্চি = 2.54 সেন্টিমিটার
1 ফুট = 0.3048 মিটার
1 মিটার = 1,000 মিলিমিটার
1 মিটার = 100 সেন্টিমিটার
1 কিলোমিটার = 1,000 মিটার
1 কিলোমিটার ≈ 0.62 মাইল
ক্ষেত্রঃ
1 বর্গ ফুট = 144 বর্গ ইঞ্চি
1 বর্গ গজ = 9 বর্গ ফুট
1 একর = 43560 বর্গ ফুট
আয়তনঃ
1 লিটার ≈ 0.264 গ্যালন
1 ঘন ফুট = 1.728 ঘন ইঞ্চি
1 ঘন গজ = 27 ঘন ফুট
ওজনঃ
1 আউন্স ≈ 28.350 গ্রাম
1 cvDÛ= 16 আউন্স
1 cvDÛ ≈ 453.592 গ্রাম
1 এক গ্রামের এর্কসহস্রাংশ = 0.001গ্রাম
1 কিলোগ্রাম = 1,000 গ্রাম
1 কিলোগ্রাম ≈ 2.2 পাউন্ড
1 টন = 2,200 পাউন্ড
মিলিয়ন, বিলিয়ন, ট্রিলিয়ন হিসাব
১ মিলিয়ন=১০ লক্ষ
১০ মিলিয়ন=১ কোটি
১০০ মিলিয়ন=১০ কোটি
১,০০০ মিলিয়ন=১০০ কোটি
আবার,
১,০০০ মিলিয়ন= ১ বিলিয়ন
১ বিলিয়ন=১০০ কোটি
১০ বিলিয়ন=১,০০০ কোটি
১০০ বিলিয়ন=১০,০০০ কোটি
১,০০০ বিলিয়ন=১ লক্ষ কোটি
আবার,
১,০০০ বিলিয়ন=১ ট্রিলিয়ন
১ ট্রিলিয়ন=১ লক্ষ কোটি
১০ ট্রিলিয়ন=১০ লক্ষ কোটি
১০০ ট্রিলিয়ন=১০০ লক্ষ কোটি
১,০০০ ট্রিলিয়ন=১,০০০ লক্ষ কোটি।
—————————–
১ রিম = ২০ দিস্তা = ৫০০ তা
১ ভরি = ১৬ আনা ;
১ আনা = ৬ রতি
১ গজ = ৩ ফুট = ২ হাত
১ কেজি = ১০০০ গ্রাম
১ কুইন্টাল = ১০০ কেজি
১ মেট্রিক টন = ১০ কুইন্টাল = ১০০০ কেজি
১ লিটার = ১০০০ সিসি
১ মণ = ৪০ সের
১ বিঘা = ২০ কাঠা( ৩৩ শতাংশ) ;
১ কাঠা = ৭২০ বর্গফুট (৮০ বর্গ গজ)
1 মিলিয়ন = 10 লক্ষ
1 মাইল = 1.61 কি.মি ;
1 কি.মি. = 0..62
1 ইঞ্চি = 2.54 সে.মি ;
1 মিটার = 39.37 ইঞ্চি
1 কে.জি = 2.20 পাউন্ড ;
1 সের = 0.93 কিলোগ্রাম
1 মে. টন = 1000 কিলোগ্রাম ;
1 পাউন্ড = 16 আউন্স
1 গজ= 3 ফুট ;
1 একর = 100 শতক
1 বর্গ কি.মি.= 247 একর
১০ মিলিয়ন=১ কোটি
১০০ মিলিয়ন=১০ কোটি
১,০০০ মিলিয়ন=১০০ কোটি
আবার,
১,০০০ মিলিয়ন= ১ বিলিয়ন
১ বিলিয়ন=১০০ কোটি
১০ বিলিয়ন=১,০০০ কোটি
১০০ বিলিয়ন=১০,০০০ কোটি
১,০০০ বিলিয়ন=১ লক্ষ কোটি
আবার,
১,০০০ বিলিয়ন=১ ট্রিলিয়ন
১ ট্রিলিয়ন=১ লক্ষ কোটি
১০ ট্রিলিয়ন=১০ লক্ষ কোটি
১০০ ট্রিলিয়ন=১০০ লক্ষ কোটি
১,০০০ ট্রিলিয়ন=১,০০০ লক্ষ কোটি।
—————————–
১ রিম = ২০ দিস্তা = ৫০০ তা
১ ভরি = ১৬ আনা ;
১ আনা = ৬ রতি
১ গজ = ৩ ফুট = ২ হাত
১ কেজি = ১০০০ গ্রাম
১ কুইন্টাল = ১০০ কেজি
১ মেট্রিক টন = ১০ কুইন্টাল = ১০০০ কেজি
১ লিটার = ১০০০ সিসি
১ মণ = ৪০ সের
১ বিঘা = ২০ কাঠা( ৩৩ শতাংশ) ;
১ কাঠা = ৭২০ বর্গফুট (৮০ বর্গ গজ)
1 মিলিয়ন = 10 লক্ষ
1 মাইল = 1.61 কি.মি ;
1 কি.মি. = 0..62
1 ইঞ্চি = 2.54 সে.মি ;
1 মিটার = 39.37 ইঞ্চি
1 কে.জি = 2.20 পাউন্ড ;
1 সের = 0.93 কিলোগ্রাম
1 মে. টন = 1000 কিলোগ্রাম ;
1 পাউন্ড = 16 আউন্স
1 গজ= 3 ফুট ;
1 একর = 100 শতক
1 বর্গ কি.মি.= 247 একর
প্রশ্নঃ ১ কিমি সমান কত মাইল ?
উত্তরঃ ০.৬২ মাইল।
প্রশ্নঃ ১ নেটিক্যাল মাইলে কত মিটার ?
উত্তরঃ ১৮৫৩.২৮ মিটার।
প্রশ্নঃ সমুদ্রের জলের গভীরতা মাপার
একক ?
উত্তরঃ ফ্যাদম।
প্রশ্নঃ ১.৫ ইঞ্চি ১ ফুটের কত অংশ?
উত্তরঃ ১/৮ অংশ।
১মাইল =১৭৬০ গজ।]
প্রশ্নঃ এক বর্গ কিলোমিটার কত একর?
উত্তরঃ ২৪৭ একর।
প্রশ্নঃ একটি জমির পরিমান ৫ কাঠা হলে,
তা কত বর্গফুট হবে?
উত্তরঃ ৩৬০০ বর্গফুট।
প্রশ্নঃ এক বর্গ ইঞ্চিতে কত বর্গ
সেন্টিমিটার?
উত্তরঃ ৬.৪৫ সেন্টিমিটার।
প্রশ্নঃ ১ ঘন মিটার = কত লিটার?
উত্তরঃ ১০০০ লিটার।
প্রশ্নঃ এক গ্যালনে কয় লিটার?
উত্তরঃ ৪.৫৫ লিটার।
প্রশ্নঃ ১ সের সমান কত কেজি?
উত্তরঃ ০.৯৩ কেজি।
প্রশ্নঃ ১ মণে কত কেজি?
উত্তরঃ ৩৭.৩২ কেজি।
প্রশ্নঃ ১ টনে কত কেজি?
উত্তরঃ ১০০০ কেজি।
প্রশ্নঃ ১ কেজিতে কত পাউন্ড??
উত্তরঃ ২.২০৪ পাউন্ড।
প্রশ্নঃ ১ কুইন্টালে কত কেজি?
উত্তরঃ ১০০কেজি।
——————————–
British & U.S British U.S
1 gallons = 4.5434 litres = 4.404
litres
2 gallons = 1 peck = 9.8070 litres
= 8.810 litres
—————————————–
ক্যারেট কি?.
উত্তরঃ মূল্যবান পাথর ও ধাতুসামগ্রী
পরিমাপের একক ক্যারেট ।
1 ক্যারেট =0 .2 গ্রাম
উত্তরঃ ০.৬২ মাইল।
প্রশ্নঃ ১ নেটিক্যাল মাইলে কত মিটার ?
উত্তরঃ ১৮৫৩.২৮ মিটার।
প্রশ্নঃ সমুদ্রের জলের গভীরতা মাপার
একক ?
উত্তরঃ ফ্যাদম।
প্রশ্নঃ ১.৫ ইঞ্চি ১ ফুটের কত অংশ?
উত্তরঃ ১/৮ অংশ।
১মাইল =১৭৬০ গজ।]
প্রশ্নঃ এক বর্গ কিলোমিটার কত একর?
উত্তরঃ ২৪৭ একর।
প্রশ্নঃ একটি জমির পরিমান ৫ কাঠা হলে,
তা কত বর্গফুট হবে?
উত্তরঃ ৩৬০০ বর্গফুট।
প্রশ্নঃ এক বর্গ ইঞ্চিতে কত বর্গ
সেন্টিমিটার?
উত্তরঃ ৬.৪৫ সেন্টিমিটার।
প্রশ্নঃ ১ ঘন মিটার = কত লিটার?
উত্তরঃ ১০০০ লিটার।
প্রশ্নঃ এক গ্যালনে কয় লিটার?
উত্তরঃ ৪.৫৫ লিটার।
প্রশ্নঃ ১ সের সমান কত কেজি?
উত্তরঃ ০.৯৩ কেজি।
প্রশ্নঃ ১ মণে কত কেজি?
উত্তরঃ ৩৭.৩২ কেজি।
প্রশ্নঃ ১ টনে কত কেজি?
উত্তরঃ ১০০০ কেজি।
প্রশ্নঃ ১ কেজিতে কত পাউন্ড??
উত্তরঃ ২.২০৪ পাউন্ড।
প্রশ্নঃ ১ কুইন্টালে কত কেজি?
উত্তরঃ ১০০কেজি।
——————————–
British & U.S British U.S
1 gallons = 4.5434 litres = 4.404
litres
2 gallons = 1 peck = 9.8070 litres
= 8.810 litres
—————————————–
ক্যারেট কি?.
উত্তরঃ মূল্যবান পাথর ও ধাতুসামগ্রী
পরিমাপের একক ক্যারেট ।
1 ক্যারেট =0 .2 গ্রাম
বেল কি?
উত্তরঃ পাট বা তুলা পরিমাপের সময় ‘বেল’
একক হিসাবে ব্যবহৃত হয় ।
1 বেল = 3.5 মণ (প্রায়) ।
উত্তরঃ পাট বা তুলা পরিমাপের সময় ‘বেল’
একক হিসাবে ব্যবহৃত হয় ।
1 বেল = 3.5 মণ (প্রায়) ।
More Stories
অলৌকিক ঘটনা: গাছ থেকে রক্ত বের হচ্ছে বিশ্লেষণ চন্দন প্রতাপ মাগুরা
গরিবের স্ট্যাটাসঃ অলীক ধারণা ও গল্প (মুহাম্মদ ইউনুসের বই থেকে)
শরিফার গল্প বাদঃ কি শিক্ষা পেলাম